Abstract

Objective This study aims at investigating differences in the spontaneous brain activity and functional connectivity in the sensorimotor system between ballroom dancers and nondancers, to further support the functional alteration in people with expertise. Materials and Methods Twenty-three ballroom dancers and twenty-one matched novices with no dance experience were recruited in this study. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity, as methods for assessing resting-state functional magnetic resonance imaging (rs-fMRI) data, were used to reveal the resting-state brain function in these participants. Results Compared to the novices, ballroom dancers showed increased ALFF in the left middle temporal gyrus, bilateral precentral gyrus, bilateral inferior frontal gyrus, left postcentral gyrus, left inferior temporal gyrus, right middle occipital gyrus, right superior temporal gyrus, and left middle frontal gyrus. The ballroom dancers also demonstrated lower ALFF in the left lingual gyrus and altered functional connectivity between the inferior frontal gyrus and temporal, parietal regions. Conclusions Our results indicated that ballroom dancers showed elevated neural activity in sensorimotor regions relative to novices and functional alterations in frontal-temporal and frontal-parietal connectivity, which may reflect specific training experience related to ballroom dancing, including high-capacity action perception, attentional control, and movement adjustment.

Highlights

  • In recent years, with the increase in the number of available exercise options, dance-based exercise, such as ballroom dancing, has become very popular in China

  • Compared to the control group, the dancer group showed that the seed belonging to the inferior frontal gyrus had significantly lower functional connectivity to the bilateral insula, right inferior temporal gyrus, bilateral precentral gyrus, left postcentral gyrus, left middle temporal gyrus, left fusiform gyrus, and right cerebellum (Table 3, Figure 2)

  • The dancers showed higher Amplitude of low-frequency fluctuation (ALFF) in the left middle temporal gyrus, bilateral precentral gyrus, bilateral inferior frontal gyrus, left postcentral gyrus, left inferior temporal gyrus, right middle occipital gyrus, right superior temporal gyrus, and left middle frontal gyrus compared to the control group

Read more

Summary

Introduction

With the increase in the number of available exercise options, dance-based exercise, such as ballroom dancing, has become very popular in China. Similar to other traditional dancing forms (e.g., ballet), ballroom dancing requires the synchronization of various body movements according to auditory stimuli. Ballroom dancing demands a high-level domain-specific motor skill. Ballroom dancers provide a unique model to investigate how the brain integrates movement and sound and to develop motor expertise combining artistic creativity and performance. A large amount of evidence indicates that motor skill training, including dance, can improve brain function and promote brain plasticity [1,2,3]. To our knowledge, no work has been done to investigate whether ballroom dancing alters functional plasticity in the brain, especially in sensorimotor areas

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call