Abstract

BackgroundPseudoaneurysm formation is known to complicate arteriovenous haemodialysis access. Ultrasound guided thrombin injection is a recognised treatment option, but is not possible in pseudoaneurysms with no measurable neck. Balloon assisted techniques have been described in such cases, which transiently obstruct flow out of the pseudoaneurysm and thereby prevent non-target embolization during ultrasound guided percutaneous thrombin injection. We describe a balloon assisted technique for the treatment of a radial artery pseudoaneurysm, via retrograde access from the draining cephalic vein of an arteriovenous fistula.MethodA 61-year-old male with a radio-cephalic fistula was found on duplex ultrasound to have a large radial artery pseudoaneurysm with no measurable neck, as well as a juxta-anastomotic cephalic vein stenosis. Endovascular treatment was selected over open surgery. Retrograde cephalic venous access was established, which allowed for concurrent treatment of both the venous stenosis and the arterial pseudoaneurysm. After balloon dilation of the juxta-anastomotic stenosis, a percutaneous transluminal angioplasty balloon catheter was advanced across the arteriovenous anastomosis and inflated across the neck of the radial artery pseudoaneurysm, to transiently obstruct blood flow. This allowed for safe injection of thrombin into the pseudoaneurysm by direct ultrasound guided sac puncture; thereby achieving thrombosis.ConclusionsBalloon assisted ultrasound guided thrombin injection is an endovascular treatment option that can obviate the need for open surgery in cases involving pseudoaneurysms with no measurable neck. The technique described allowed both concurrent treatment of a juxta-anastomotic venous stenosis and treatment of an arterial pseudoaneurysm from a single venous puncture. This technique avoided arterial access and its inherent complications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.