Abstract

The conformation of a linear gradient copolymer chain in a homopolymer melt is investigated using theory and numerical solutions of self-consistent field equations. In the limit of large comonomer immiscibility and chain length, it is found that the copolymer collapses into a globule with monomers self-assembled into a “ball-of-yarn” conformation. The spatial heterogeneity of monomers within the globule is in striking contrast to the “tadpole” conformation of a collapsed symmetric diblock copolymer and the disordered globular state of a collapsed homopolymer or random copolymer. By simple free energy calculations, we find that the same thermodynamic factors which drive a melt of linear gradient copolymers to self-assemble into lamellar microphases in the strong-segregation regime act to drive a single copolymer to self-assemble its own monomers into the yarn ball conformation when in a homopolymer melt with which it is immiscible. Moreover, by considering self-assembly of monomers within the globule of a ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.