Abstract
Coal chemical wastewater (CCW) containing toxic and hazardous matters requires to be treated prior to discharge. Promoting the in-situ formation of magnetic aerobic granular sludge (mAGS) in continuous flow reactor process has a great potential for CCW remediation. However, long granulation time and low stability limit the application of AGS technology. In this study, Fe3O4/sludge biochar (Fe3O4/SC) with biochar matrix derived from coal chemical sludge were applied to facilitate the aerobic granulation in two-stage continuous flow reactors, containing separated anoxic and oxic reaction units (abbreviated as A/O process). The performance of A/O process was evaluated at various hydraulic retention times (HRTs) (42 h, 27 h, and 15 h). Magnetic Fe3O4/SC with porous structures, high specific surface area (BET = 96.69 m2/g), and abundant functional groups was successfully prepared by ball-milled method. Adding magnetic Fe3O4/SC to A/O process could promote aerobic granulation (85 days) and the removal of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) from CCW at all tested HRTs. Since the formed mAGS had high biomass, good settling ability, and high electrochemical activities, mAGS-based A/O process had high tolerance to the decrease of HRT from 42 h to 15 h for CCW treatment. The optimized HRT for A/O process was 27 h, at which Fe3O4/SC addition can result in the increase of COD, NH4+-N and TN removal efficiencies by 2.5 %, 4.7 % and 10.5 %, respectively. Based on 16S rRNA genes sequencing, the relative abundances of genus Nitrosomonas, Hyphomicrobium/Hydrogenophaga and Gaiella in mAGS accounting for nitrification, denitrification as well as COD removal were increased during aerobic granulation. Overall, this study proved that adding Fe3O4/SC to A/O process was effective for facilitating aerobic granulation and CCW treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.