Abstract
The combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allows the investigation of neuronal activity with high temporal and spatial resolution. While much progress has been made to overcome the multiple technical challenges associated with the recording of EEG inside the MR scanner, the ballistocardiographic (BCG) artifact, which is caused by cardiac-related motion inside the magnetic field, remains a major issue affecting EEG quality. The BCG is difficult to remove by standard average artifact subtraction (AAS) methods due to its variability across cardiac cycles. We thus investigate the possibility of directly recording the BCG motion using an optical motion-tracking system. In 5 subjects, the system is shown to accurately measure BCG motion. Regressing out linear and quadratic functions of the measured motion parameters resulted in a significant reduction (p<0.05) in root-mean-square (RMS) amplitudes across cardiac cycles compared to AAS. A further significant RMS reduction was obtained when applying the regression and AAS methods sequentially, resulting in RMS amplitudes that were not significantly different from those of EEG recorded outside the scanner, although with higher residual variability. The large contributions of pure translational parameters and of non-linear terms to the BCG waveforms indicate that non-rigid motion of the EEG wires (originating from rigid head motion) is likely an important cause of the artifact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.