Abstract

The ballistic conductance of a coupled T-shaped semiconductor quantum wire (CTQW) is studied. Two types of CTQW are considered, one of which is a Π-shaped quantum wire ( ΠQW) which consists of two vertical arms on the same side of the horizontal arm and the other a Π-clone quantum wire ( ΠCQW) which consists of two vertical armes on the opposite sides of the horizontal arm. The mode matching method and Landauer-Buttiker theory are employed to study the energy dependence of the ballistic conductance. Most of transmission profiles of ΠQW and ΠCQW are found to be distinguishable for large separation d between the two vertical arms. The transmission probability manifests oscillatory behavior when d is increased. When a potential is applied to the connection region, it results in decoupling or coupling effects between the two T-shaped quantum wires according to whether it is positive or negative. When magnetic field is applied to CTQW, the transmission profiles are found to be affected prominently even if the electron passes through the field free region only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call