Abstract
Nous considérons une marche aléatoire dans un milieu stationnaire ergodique sur $\mathbb{Z}$, avec des sauts non bornés. En plus de l’uniforme ellipticité et d’une borne uniforme sur la queue de la loi des sauts, nous supposons une condition de transience forte qui garantit l’absence de “pièges.” Nous montrons la loi des grands nombres avec vitesse strictement positive, ainsi que l’ergodicité de l’environnement vu de la particule. Par ailleurs, nous étudions aussi le billard stochastique de Knudsen avec dérive dans un tube aléatoire dans $\mathbb{R}^{d}$, $d\geq3$, qui constitue l’environnement. Le tube est infini dans la première direction, et, vu comme un processus indéxé par la première coordonnée, il est supposé stationnaire ergodique. Une particule se déplace en ligne droite à l’intérieur du tube, avec des rebonds aléatoires sur le bord, selon la modification suivante de la loi de reflexion en cosinus: les sauts dans la direction positive sont toujours acceptés, tandis que ceux dans l’autre direction peuvent être rejetés. En utilisant les résultats pour la marche aléatoire en milieu aléatoire et un couplage approprié, nous obtenons la loi des grands nombres pour le billard stochastique avec dérive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.