Abstract

This study explores the ballistic performance of an alumina/carbon fibre/KevlarⓇ aramid composite panel against impacts from various projectile shapes, including ogive, conical, cylindrical, hemispherical, and 5.56 mm × 45 mm NATO rounds. The aim is to analyse the influence of projectile nose shape on penetration resistance and energy absorption, critical for defence and aerospace applications. Numerical simulations carried out in LS-DYNAⓇ, validated by experimental data, reveal that the ceramic layer effectively initiates projectile deceleration, while the fabric layers absorb the majority of the kinetic energy. Hemispherical projectiles exhibit minimal plastic deformation, highlighting the composite's optimal performance against this shape. In contrast, ogive projectiles demonstrate greater penetrative potential, challenging the composite's multi-layered defence. The study finds that approximately 90% of the kinetic energy is absorbed by the fabric backing, with a small portion absorbed through projectile deformation and ceramic cracking. These results underscore the importance of considering projectile deformation in simulations and suggest that the composite design is well-suited for enhancing protection against high-velocity impacts in defence and aerospace sectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.