Abstract

We report studies of the motion of cold atoms in a time-dependent optical potential. The dynamics of our system are that of the quantum kicked rotor, and exhibit a wide variety of phenomena. One purely quantum effect is the quantum resonance, which occurs for well-chosen initial conditions and specific values of the period between kicks. Distinctly nonclassical behavior, such as ballistic growth in momentum, is possible at a quantum resonance. Previous experimental studies have observed these resonances, but have not clearly resolved the expected ballistic motion. We now observe ballistic motion at quantum resonances and compare our momentum distributions with theory and numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.