Abstract

We study ballistic thermal transport in Heisenberg spin chain with nearest-neighbor ferromagnetic interactions at low temperatures. Explicit expressions for transmission coefficients are derived for thermal transport in a periodic spin chain of arbitrary junction length by a spin-wave model. Our analytical results agree very well with the ones from nonequilibrium Green's function method. Our study shows that the transmission coefficient oscillates with the frequency of thermal wave. Moreover, the thermal transmission shows strong dependence on the intrachain coupling, the length of the spin chain, and the external magnetic field. The results demonstrate the possibility of manipulating spin-wave propagation and magnetothermal conductance in the spin-chain junction by adjusting the intrachain coupling and/or the external magnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call