Abstract
To determine the ballistic limit velocity of titanium–titanium tri-aluminide (Ti/Al3Ti)-laminated composites under the action of tungsten alloy spherical fragments, a type of 12.7 mm ballistic gun loading system was used to test the tungsten alloy spherical fragments vertically impacting the Ti/Al3Ti-laminated composite targets with different thickness. The relationship between the ballistic limit velocity and the target area density of the Ti/Al3Ti-laminated composite was obtained. As the area density increased, the ballistic limit velocity and the ballistic energy absorbed by the target plate also enhanced. Based on the dimensional analysis and similarity theory, a simulation law of tungsten alloy spherical fragments penetrating Ti/Al3Ti-laminated composite targets with different thickness was studied and an empirical formula for the ballistic limit velocity was obtained. The research results had an important application value for the optimal design of the light armor protection structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.