Abstract

In this article, the ballistic impact response of square clamped fiber–metal laminates and monolithic plates consisting of different aluminum alloys is investigated using the ANSYS LS-DYNA explicit nonlinear analysis software. The panels are subjected to central normal high velocity ballistic impact by a cylindrical projectile. The implemented finite element models have been validated by comparison with published experimental data concerning GLARE 5 and monolithic 2024-T3 aluminum plates. Using the validated models, the influence of the mechanical properties of the constituent aluminum alloy on the ballistic resistance of the fiber–metal laminates and the monolithic plates is studied. Apart from 2024-T3, the aluminum alloys 2024-T351, 2024-O, 6061-T6, 7039 and 7075-T6 are considered. It is found that the ballistic limits of the panels can be substantially affected by the constituent aluminum alloy. The 7075-T6 aluminum alloy offers the highest ballistic resistance whereas 2024-O aluminum alloy offers the lowest ballistic resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.