Abstract

The distribution of Schottky barrier heights over the contact area in Au/n-Si diodes was determined by ballistic electron emission microscopy. For samples on which an aqueous HF pretreatment of the Si substrate was applied, the histogram contains several high barrier Gaussian distribution components. After a short rinse, in de-ionized water or methanol, it was mainly the most important lower Gaussian component which was left. Using additional x-ray photoemission spectroscopy and atomic force microscopy measurements allowed us to propose a model, wherein negatively charged species containing F at the interface, are thought to be responsible for the high barrier Gaussian components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call