Abstract

Providing computer-assisted tactics analysis in sports is a growing trend. This paper presents an automatic system for ball tracking and 3D trajectory approximation from single-camera volleyball sequences as well as demonstrates several applications to tactics analysis. Ball tracking in volleyball video has great complexity due to the high density of players on the court and the complicated overlapping of ball-player. The 2D-to-3D inference is intrinsically challenging due to the loss of 3D information in projection to 2D frames. To overcome these challenges, we propose a two-phase ball tracking algorithm in which we first detect ball candidates for each frame, and then use them to compute the ball trajectories. With the aid of camera calibration, we involve physical characteristics of ball motion to approximate the 3D ball trajectory from the 2D trajectory. The visualization of 3D trajectory and the applications to trajectory-based tactics analysis not only assist the coaches and players in game study but also make game watching a whole new experience. The experiments on international volleyball games show encouraging results. We believe that the proposed framework can be extended and applied to various kinds of sports games.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.