Abstract

Inspired by Bondarenko’s counter-example to Borsuk’s conjecture, we notice some strongly regular graphs that provide examples of ball packings whose chromatic numbers are significantly higher than the dimensions. In particular, from generalized quadrangles we obtain unit ball packings in dimension q3−q2+q with chromatic number q3+1, where q is a prime power. This improves the previous lower bounds for the chromatic number of ball packings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.