Abstract
It is still a challenge to overcome the extended setting process of pure Ca-silicate as root canal fillers. We investigated the effects of attapulgite (a basic hydrous silicate of magnesium and aluminum) and ball-milling liquid medium on the self-curing properties of conventional β-dicalcium silicate (C2Si)-based cements. It was shown that a minor amount of attapulgite nanofibers (1–4%) had only a slight influence on setting time but caused a large increase in compressive resistance and structural stability. In particular, the ball milling media with different acetone/water ratios (3:0, 2:1, 1:2, 0:3) could directly influence the particle size distribution of C2Si powders, and the co-existence of liquid media (2:1 or 1:2) may be beneficial for shortening the setting time, enhancing early-stage compressive strength, and significantly improving the anti-microleakage ability of cement. Moreover, the composite cements also exhibited appreciable antibacterial efficacy in vitro. These findings demonstrated that the physicochemical properties of the Ca-silicate powders could be tuned by adding a minor amount of inorganic silicate nanofibers and a simple ball milling condition, and such a facile strategy is favorable for developing novel (pre-mixed) Ca silicate-based cements as root canal sealers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.