Abstract

Porous carbons are considered as promising electrode materials for electrical double layer capacitors due to their high surface area, abundant pores and high conductivity. However, the preparation of porous carbons with controlled morphology and graphitization degree is still a challenge, since the structure of the precursor tends to collapse and the amorphous carbon tends to form during the synthesis process. Herein, an efficient ball milling-assisted method for the preparation of porous carbons with controlled morphology and graphitization degree is developed. The results show that the amount of FeCl3·6H2O determines the morphologies, graphitization degree and yield of porous carbons. The as-prepared porous carbon exhibits a superior specific capacitance of 168 F g−1 at 1 A g−1 and a good cycling stability of a 94.7% capacitance retention after 10,000 cycles when used as supercapacitor electrode materials. The excellent electrochemical performance is attributed to the high surface area (992 m2 g−1) and rich micropores, which can supply more active sites and ensure high specific capacitance. The abundant mesopores and high graphitization degree can accelerate the electron transfer and the ion diffusion within the electrodes. In addition, the thin sheets can also shorten the ion diffusion and electron transfer length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.