Abstract

We present a local convergence analysis of a sixth order iterative method for approximate a locally unique solution of an equation defined on the real line. Earlier studies such as Sharma et al. (Appl Math Comput 190:111---115, 2007) have shown convergence of these methods under hypotheses up to the fifth derivative of the function although only the first derivative appears in the method. In this study we expand the applicability of these methods using only hypotheses up to the first derivative of the function. Numerical examples are also presented in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.