Abstract

We have continued to map and identify genes encoding a family of secretory proteins. These proteins are synthesized in larval salivary glands of the midge, Chironomus tentans, and assemble in vivo into insoluble silk-like threads. The genes for several secretory proteins exist in Balbiani rings (BRs) on salivary-gland polytene chromosomes. A randomly primed cDNA clone, designated pCt185, hybridized in situ to BR3 and was shown on Northern blots to originate from a salivary gland-specific 6-kb poly(A) +RNA. The partial cDNA sequence contained 483 nucleotides including one open reading frame (ORF) encoding 160 amino acids (aa). A striking feature of the ORF was the periodic distribution of cysteine residues (Cys-X-Cys-X-Cys-X 6-Cys) which occurred approximately every 22 aa. A cDNA-encoded 18-aa sequence was selected for chemical peptide synthesis. When affinity-purified antipeptide antibodies were incubated with a Western blot containing salivary-gland proteins they reacted specifically with a 185-kDa secretory protein (sp185). Developmental studies showed that sp185 and its mRNA were present in salivary glands throughout the fourth larval instar. Thus sp185 and a family of 1000-kDa secretory proteins are encoded by a class of genes that are expressed throughout the fourth instar. This contrasts with the developmental regulated expression of the sp140 and sp195 genes whose expression is maximal during the prepupal stages of larval development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call