Abstract

Water yield and purification are important aspects of water ecosystem services, and achieving a balanced development of the two is necessary for the development of aquatic ecosystems. Using the InVEST model, the spatiotemporal variations of regional water yield and purification services in Shanxi, China, from 2000 to 2020 were analyzed. Three future scenarios (natural development, urban development, and ecological protection) were assessed for 2030 using the PLUS model. The results showed that in 2000–2020, the water yield of Shanxi Province in terms of space was generally low in the middle and northwest and high in the southeast, and it was affected by land-use change and climatic change. From 2000 to 2020, the water yield of Shanxi Province changed by 78.8 mm. In 2030, water yield will be highest under the urban development scenario (380.53 mm) and lowest in the ecological protection scenario (368.22 mm). Moreover, the water quality purification capacity improved, with nitrogen loading high in the center and low in the east and west. Due to the implementation of environmental protection policies and the improvement of the technical level, the nitrogen load was the highest in 2000 (0.97 kg/hm2) and lowest in 2015 (0.94 kg/hm2). By 2030, because of the high nitrogen loadings of cultivation and construction land and low nitrogen loadings of forests and grasslands, the nitrogen load was lowest under the scenario of urban development (0.94 kg/hm2) and highest under ecological protection (0.85 kg/hm2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call