Abstract

GABA transporter (GAT) blockade recruits extrasynaptic GABAA receptors (GABAA Rs) and amplifies constitutive presynaptic GABAB R activity. Extrasynaptic GABAA Rs contribute to a tonic current. Corticosteroids increase the tonic current mediated by extrasynaptic GABAA Rs. Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN) are integratory hubs that regulate the endocrine response to stress. GABA inputs provide a basal inhibitory tone that constrains this system and circulating glucocorticoids (CORT) are important feedback controllers of CRH output. Surprisingly little is known about the direct effects of CORT on GABA synapses in PVN. Here we used whole-cell patch clamp recordings from CRH neurons in mouse hypothalamic brain slices to examine the effects of CORT on synaptic and extrasynaptic GABA signalling. We show that GABA transporters (GATs) limit constitutive activation of presynaptic GABAB receptors and ensure high release probability at GABA synapses. GATs in combination with GABAB receptors also curtail extrasynaptic GABAA R signalling. CORT has no effect on synaptic GABA signalling, but increases extrasynaptic GABA tone through upregulation of postsynaptic GABAA receptors. These data show that efficient GABA clearance and autoinhibition control the balance between synaptic (phasic) and extrasynaptic (tonic) inhibition in PVN CRH neurons. This balance is shifted towards increased extrasynaptic inhibition by CORT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.