Abstract
The Network Function Virtualization (NFV) paradigm is enabling flexibility, programmability and implementation of traditional network functions into generic hardware, in form of the so-called Virtual Network Functions (VNFs). Today, cloud service providers use Virtual Machines (VMs) for the instantiation of VNFs in the data center (DC) networks. To instantiate multiple VNFs in a typical scenario of Service Function Chains (SFCs), many important objectives need to be met simultaneously, such as server load balancing, energy efficiency and service execution time. The well-known \emph{VNF placement} problem requires solutions that often consider \emph{migration} of virtual machines (VMs) to meet this objectives. Ongoing efforts, for instance, are making a strong case for migrations to minimize energy consumption, while showing that attention needs to be paid to the Quality of Service (QoS) due to service interruptions caused by migrations. To balance the server allocation strategies and QoS, we propose using \emph{replications} of VNFs to reduce migrations in DC networks. We propose a Linear Programming (LP) model to study a trade-off between replications, which while beneficial to QoS require additional server resources, and migrations, which while beneficial to server load management can adversely impact the QoS. The results show that, for a given objective, the replications can reduce the number of migrations and can also enable a better server and data center network load balancing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.