Abstract

The balance of energy flow from light absorption into biomass was investigated under simulated natural light conditions in the diatom Phaeodactylum tricornutum and the green alga Chlorella vulgaris. The energy balance was quantified by comparative analysis of carbon accumulation in the new biomass with photosynthetic electron transport rates per absorbed quantum, measured both by fluorescence quenching and oxygen production. The difference between fluorescence- and oxygen-based electron flow is defined as 'alternative electron cycling'. The photosynthetic efficiency of biomass production was found to be identical for both algae under nonfluctuating light conditions. In a fluctuating light regime, a much higher conversion efficiency of photosynthetic energy into biomass was observed in the diatom compared with the green alga. The data clearly show that the diatom utilizes a different strategy in the dissipation of excessively absorbed energy compared with the green alga. Consequently, in a fluctuating light climate, the differences between green algae and diatoms in the efficiency of biomass production per photon absorbed are caused by the different amount of alternative electron cycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.