Abstract

Designing alloys with an accurate temperature-independent electrical response over a wide temperature range, specifically a low temperature coefficient of resistance (TCR), remains a big challenge from a material design point of view. More than a century after their discovery, Constantan (Cu-Ni) and Manganin (Cu-Mn-Ni) alloys remain the top choice for strain gauge applications and high-quality resistors up to 473-573 K. Here, an average TCR is demonstrated that is up to ≈800 times smaller in the temperature range 5-300 K and >800 times smaller than for any of these standard materials over a wide temperature range (5 K < T < 1200 K). This is achieved for selected compositions of Alx CoCrFeNi high-entropy alloys (HEAs), for which a strong correlation of the ultralow TCR is established with the underlying microstructure and its local composition. The exceptionally low electron-phonon coupling expected in these HEAs is crucial for developing novel devices, e.g., hot-electron detectors, high-Q resonant antennas, and materials in gravitational wave detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.