Abstract

Utilization of renewable energy resources such as wind energy for electric power generation has assumed great significance in recent years. Wind power is a source of clean energy and is able to spur the reductions of both consumption of depleting fuel reserves and emissions of pollutants. However, since the availability of wind power is highly dependent on the weather conditions, the penetration of wind power into traditional utility grids may incur certain security implications. Therefore, in economic power dispatch including wind power penetration, a reasonable tradeoff between system risk and operational cost is desired. In this paper, a bi-objective economic dispatch problem considering wind penetration is formulated, which treats operational costs and security impacts as conflicting objectives. Different fuzzy membership functions are used to reflect the dispatcher’s attitude toward the wind power penetration. A modified multi-objective particle swarm optimization (MOPSO) algorithm is adopted to develop a power dispatch scheme which is able to achieve compromise between economic and security requirements. Numerical simulations including sensitivity analysis are reported based on a typical IEEE test power system to show the validity and applicability of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.