Abstract

The porous structure within the cathode catalyst layers (CLs) plays a crucial role in facilitating phosphoric acid (PA) invasion and oxygen diffusion, which was essential for establishing the triple-phase boundaries (TPBs) in high-temperature proton exchange membrane fuel cells (HT-PEMFCs).In this work, a gradient porous structure is deliberately constructed within the cathode CL by carefully controlling the microstructures of the double CLs. The effects of pore diameter distribution in the cathode CL and PA content in the membrane electrode assembly (MEA) on the single cell performance of HT-PEMFC are systematically investigated. By incorporating an appropriate amount of PA in the MEA, along with the optimized gradient porous structure, the inner pores effectively stored acid and prevented its outward diffusion. Simultaneously, the pores in the outer CL provided additional pathways for oxygen transfer. Consequently, the optimized gradient porous structure enhanced the peak power density of H2/Air fuel cells to 0.510 W cm−2 at a Pt loading of 0.5 mgPt cm−2, a notable improvement compared to 0.396 W cm−2 of the traditional single CL. The mechanism analysis further reveals that the cathode CL with gradient porous structure can successfully balance proton transfer and mass transfer, hence reducing the polarizations in fuel cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.