Abstract

Integrating Artificial Intelligence (AI) in healthcare represents a transformative shift with substantial potential for enhancing patient care. This paper critically examines this integration, confronting significant ethical, legal, and technological challenges, particularly in patient privacy, decision-making autonomy, and data integrity. A structured exploration of these issues focuses on Differential Privacy as a critical method for preserving patient confidentiality in AI-driven healthcare systems. We analyze the balance between privacy preservation and the practical utility of healthcare data, emphasizing the effectiveness of encryption, Differential Privacy, and mixed-model approaches. The paper navigates the complex ethical and legal frameworks essential for AI integration in healthcare. We comprehensively examine patient rights and the nuances of informed consent, along with the challenges of harmonizing advanced technologies like blockchain with the General Data Protection Regulation (GDPR). The issue of algorithmic bias in healthcare is also explored, underscoring the urgent need for effective bias detection and mitigation strategies to build patient trust. The evolving roles of decentralized data sharing, regulatory frameworks, and patient agency are discussed in depth. Advocating for an interdisciplinary, multi-stakeholder approach and responsive governance, the paper aims to align healthcare AI with ethical principles, prioritize patient-centered outcomes, and steer AI towards responsible and equitable enhancements in patient care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.