Abstract
We discuss the development and use of a recursive rank-one residue iteration (triple R-I) to balancing pairwise comparison matrices (PCMs). This class of positive matrices is in the center of interest of a widely used multi-criteria decision making method called analytic hierarchy process (AHP). To find a series of the ’best’ transitive matrix approximations to the original PCM the Newton-Kantorovich (N-K) method is employed for the solution to the formulated nonlinear problem. Applying a useful choice for the update in the iteration, we show that the matrix balancing problem can be transformed to minimizing the Frobenius norm. Convergence proofs for this scaling algorithm are given. A comprehensive numerical example is included to illustrate the useful features to measuring and reducing perturbation errors and inconsistency of a PCM as a result of the respondents’ judgments on the pairwise comparisons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.