Abstract
Pathological cardiac hypertrophy is a major risk factor associated with heart failure, a state concomitant with increased cell death. However, the mechanism governing progression of hypertrophy to apoptosis at the single-cell level remains elusive. Here, we demonstrate annexin A6 (Anxa6), a calcium (Ca2+)-dependent phospholipid-binding protein critically regulates the transition of chronic hypertrophied cardiomyocytes to apoptosis. Treatment of the H9c2(2-1) cardiomyocytes with hypertrophic agonists upregulates and relocalizes Anxa6 with increased cytosolic punctate appearance. Live cell imaging revealed that chronic exposure to hypertrophic agonists such as phenylephrine (PE) compromises the mitochondrial membrane potential (ΔΨm) and morphological dynamics. Such chronic hypertrophic induction also activated the caspases 9 and 3 and induced cleavage of the poly-(ADP-ribose) polymerase 1 (Parp1), which are the typical downstream events in the mitochondrial pathways of apoptosis. An increased rate of apoptosis was evident in the hypertrophied cardiomyocytes after 48–72 h of treatment with the hypertrophic agonists. Anxa6 was progressively associated with the mitochondrial fraction under chronic hypertrophic stimulation, and Anxa6 knockdown severely abrogated mitochondrial network and dynamics. Ectopically expressed Anxa6 protected the mitochondrial morphology and dynamics under PE treatment, and also increased the cellular susceptibility to apoptosis. Biochemical analysis showed that Anxa6 interacts with Parp1 and its 89 kDa cleaved product in a Ca2+-dependent manner through the N-terminal residues (1–28). Furthermore, expression of Anxa6S13E, a mutant dominant negative with respect to Parp1 binding, served as an enhancer of mitochondrial dynamics, even under chronic PE treatment. Chemical inhibition of Parp1 activity released the cellular vulnerability to apoptosis in Anxa6-expressing stable cell lines, thereby shifting the equilibrium away from cell death. Taken together, the present study depicts a dual regulatory function of Anxa6 that is crucial for balancing hypertrophy with apoptosis in cardiomyocytes.
Highlights
Understanding the dynamics of such signaling events is vital for the development of novel therapeutic strategies
To explore the temporal events under chronic hypertrophy, we analyzed the effects of adrenergic induction on mitochondrial membrane potential (ΔΨm) and morphological dynamics, parameters that are directly correlated with mitochondrial dysfunction and programmed cell death.[29,30,31]
Chronic hypertrophy of H9c2 cardiomyocytes is concomitant with altered expression and localization dynamics of Anxa[6]
Summary
Understanding the dynamics of such signaling events is vital for the development of novel therapeutic strategies. Adrenergic stimulation is crucial in compensatory and pathological cardiac hypertrophy, an early state that may proceed towards heart failure.[27] Cardiac hypertrophy at advanced stages (chronic) is associated with mitochondrial dysfunction, which contributes to cardiac decompensation.[28] To explore the temporal events under chronic hypertrophy, we analyzed the effects of adrenergic induction on mitochondrial membrane potential (ΔΨm) and morphological dynamics, parameters that are directly correlated with mitochondrial dysfunction and programmed cell death.[29,30,31] Anxa[6] has been reported to be associated with mitochondria in some cell types.[17,32,33] In the present study, we aim to understand the functions of Anxa[6] under chronic hypertrophic conditions that may progress towards apoptosis
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.