Abstract

Optimization problems in hydrological modeling are frequently solved using local or global search strategies, which either maximize exploitation or exploration. Thus, the elevated performance of one strategy for one class of problems is often offset by poor performance for another class. To overcome this issue, we propose a hybrid strategy, G-CLPSO, that combines the global search characteristics of the Comprehensive Learning Particle Swarm Optimization (CLPSO) with the exploitation capability of the Marquardt-Levenberg (ML) method and implement it into the hydrological model, HYDRUS. Benchmarks involving optimizing non-separable unimodal and multimodal functions demonstrate that G-CLPSO outperforms CLPSO in terms of accuracy and convergence. Synthetic modeling scenarios involving the inverse estimation of soil hydraulic properties are used to compare the G-CLPSO against the original HYDRUS ML solver, the gradient-based algorithm PEST, and the stochastic SCE-UA strategy. Results demonstrate the superior performance of the G-CLPSO, suggesting a potential use in other environmental problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.