Abstract

Coordinated replication of eukaryotic nuclear genomes is asymmetric, with copying of a leading strand template preceding discontinuous copying of the lagging strand template. Replication is catalyzed by DNA polymerases α, δ and ɛ, enzymes that are related yet differ in physical and biochemical properties, including fidelity. Recent studies suggest that Pol ɛ is normally the primary leading strand replicase, whereas most synthesis by Pol δ occurs during lagging strand replication. New studies show that replication asymmetry can generate strand-specific genome instability resulting from biased deoxynucleotide pools and unrepaired ribonucleotides incorporated into DNA during replication, and that the eukaryotic replication machinery has evolved to most efficiently correct those replication errors that are made at the highest rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.