Abstract

Given the carbon limitation of municipal wastewater, the balance of biological nitrogen and phosphorus removal remains a challenging task. In this study, an anaerobic-anoxic–oxic combining with biological contact oxidation (A2/O-BCO) system treating real municipal wastewater was operated for 205 days, and COD-to-PO43--P ratio was confirmed as the key parameter for balancing denitrifying phosphorus-accumulating organisms (DPAOs) and denitrifying glycogen-accumulating organisms (DGAOs) to enhance N and P removal. When DPAOs dominated in nutrients removal, the increase in COD/P from 17.1 to 38.1 caused the deterioration in nitrogen removal performance decreasing to 71.8 %. As COD/P ratio decreased from 81.3 to 46.8, Ca.Competibacter proliferated from 3.11 % to 6.00 %, contributing to 58.9 % of nitrogen removal. The nitrogen and phosphorus removal efficiency reached up to 79.3 % and 95.2 %. Overall, establishing DGAOs-DPAOs balance by strengthening the effect of DGAOs could enhance the nutrients removal performance and accordingly improve the stability and efficiency of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call