Abstract

Conventional methods of enhancing the creep resistance of polyvinyl chloride (PVC) often compromise its resilience. This study proposes a novel strategy to achieve a balance between creep resistance and resilience in PVC-matrix composites by incorporating epoxidised soybean oil-modified collagen fibres (MCFs). A comparative analysis of creep and recovery behaviour was conducted among MCF/PVC, pure PVC, and other conventional modified systems. Results revealed that MCF/PVC exhibited a lower total creep strain (12.82%) than pure PVC and a higher recoverable deformation (10.80%) than the other conventional modified systems. Moreover, MCF/PVC had the longest predicted creep lifetime among all the modification systems, which was 103 times longer than that of pure PVC. These improvements were attributed to the natural multidirectional and hierarchical structure of MCF, which hindered the movement of PVC chains and provided sufficient gaps for recoverable deformation. This work provides a new perspective on developing resilient creep-resistant modifications of polymers by leveraging the structural advantages of natural products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call