Abstract
Model reduction is an area of fundamental importance in many modeling and control applications. In this paper we analyze the use of parallel computing in model reduction methods based on balanced truncation of large-scale dense systems. The methods require the computation of the Gramians of a linear-time invariant system. Using a sign function-based solver for computing full-rank factors of the Gramians yields some favorable computational aspects in the subsequent computation of the reduced-order model, particularly for non-minimal systems. As sign function-based computations only require efficient implementations of basic linear algebra operations readily available, e.g., in the BLAS, LAPACK, and ScaLAPACK, good performance of the resulting algorithms on parallel computers is to be expected. Our experimental results on a PC cluster show the performance and scalability of the parallel implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical and Computer Modelling of Dynamical Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.