Abstract

We prove a geometric version of the graph separator theorem for the unit disk intersection graph: for any set of n unit disks in the plane there exists a line \(\ell \) such that \(\ell \) intersects at most \(O(\sqrt{(m+n)\log {n}})\) disks and each of the halfplanes determined by \(\ell \) contains at most 2n/3 unit disks from the set, where m is the number of intersecting pairs of disks. We also show that an axis-parallel line intersecting \(O(\sqrt{m+n})\) disks exists, but each halfplane may contain up to 4n/5 disks. We give an almost tight lower bound (up to sublogarithmic factors) for our approach, and also show that no line-separator of sublinear size in n exists when we look at disks of arbitrary radii, even when \(m=0\). Proofs are constructive and suggest simple algorithms that run in linear time. Experimental evaluation has also been conducted, which shows that for random instances our method outperforms the method by Fox and Pach (whose separator has size \(O(\sqrt{m})\)).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.