Abstract

Container-based virtualization is becoming a de facto way to build and deploy applications because of its simplicity and convenience. Kubernetes is a well-known open-source project that provides an orchestration platform for containerized applications. An application in Kubernetes can contain multiple replicas to achieve high scalability and availability. Stateless applications have no requirement for persistent storage; however, stateful applications require persistent storage for each replica. Therefore, stateful applications usually require a strong consistency of data among replicas. To achieve this, the application often relies on a leader, which is responsible for maintaining consistency and coordinating tasks among replicas. This leads to a problem that the leader often has heavy loads due to its inherent design. In a Kubernetes cluster, having the leaders of multiple applications concentrated in a specific node may become a bottleneck within the system. In this paper, we propose a leader election algorithm that overcomes the bottleneck problem by evenly distributing the leaders throughout nodes in the cluster. We also conduct experiments to prove the correctness and effectiveness of our leader election algorithm compared with a default algorithm in Kubernetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.