Abstract

Recent developments in insect gerontological and nutritional research have suggested that the dietary protein:carbohydrate (P:C) balance is a critical determinant of lifespan and reproduction in many insects. However, most studies investigating this important role of dietary P:C balance have been conducted using dipteran and orthopteran species. In this study, we used the mealworm beetles, Tenebrio molitor L. (Coleoptera: Tenebrionidae), to test the effects of dietary P:C balance on lifespan and reproduction. Regardless of their reproductive status, both male and female beetles had the shortest lifespan at the protein-biased ratio of P:C 5:1. Mean lifespan was the longest at P:C 1:1 for males and at both P:C 1:1 and 1:5 for females. Mating significantly curtailed the lifespan of both males and females, indicating the survival cost of mating. Age-specific egg laying was significantly higher at P:C 1:1 than at the two imbalanced P:C ratios (1:5 or 5:1) at any given age throughout their lives, resulting in the highest lifetime reproductive success at P:C 1:1. When given a choice, beetles actively regulated their intake of protein and carbohydrate to a slightly carbohydrate-biased ratio (P:C 1:1.54–1:1.64 for males and P:C 1:1.3–1:1.36 for females). The self-selected P:C ratio was significantly higher for females than males, reflecting a higher protein requirement for egg production. Collectively, our results add to a growing body of evidence suggesting the key role played by dietary macronutrient balance in shaping lifespan and reproduction in insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call