Abstract

The simulation of fracture leads to collision-intensive situations that call for efficient collision detection algorithms and data structures. Bounding volume hierarchies (BVHs) are a popular approach for accelerating collision detection, but they rarely see application in fracture simulations, due to the dynamic creation and deletion of geometric primitives. We propose the use of balanced trees for storing BVHs, as well as novel algorithms for dynamically restructuring them in the presence of progressive or instantaneous fracture. By paying a small loss of fitting quality compared with complete reconstruction, we achieve more than one order of magnitude speedup in the update of BVHs

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.