Abstract
We study balanced Hermitian structures on almost abelian Lie algebras, i.e. on Lie algebras with a codimension-one abelian ideal. In particular, we classify six-dimensional almost abelian Lie algebras which carry a balanced structure. It has been conjectured in [1] that a compact complex manifold admitting both a balanced metric and an SKT metric necessarily has a Kähler metric: we prove this conjecture for compact almost abelian solvmanifolds with left-invariant complex structures. Moreover, we investigate the behaviour of the flow of balanced metrics introduced in [2] and of the anomaly flow [3] on almost abelian Lie groups. In particular, we show that the anomaly flow preserves the balanced condition and that locally conformally Kähler metrics are fixed points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.