Abstract

AbstractTropical convection that occurs on large-enough space and time scales may evolve in response to large-scale balanced circulations. In this scenario, large-scale midtropospheric vorticity anomalies modify the atmospheric stability by virtue of thermal wind gradient balance. The convective vertical mass flux and the moisture profile adjust to changes in atmospheric stability that affect moisture and entropy transport. We hypothesize that the convection observed during the 2011 DYNAMO field campaign evolves in response to balanced dynamics. Strong relationships between midtropospheric vorticity and atmospheric stability confirm the relationship between the dynamic and the thermodynamic environments, while robust relationships between the atmospheric stability, the vertical mass flux, and the saturation fraction provide evidence of moisture adjustment. These results are important because the part of convection that occurs as a response to balanced dynamics is potentially predictable. Furthermore, the diagnostics used in this work provide a simple framework for model evaluation, and suggest that one way to improve simulations of large-scale organized deep tropical convection in global models is to adequately capture the relationship between the dynamic and thermodynamic environments in convective parameterizations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call