Abstract

AbstractIn this paper we investigate the intersections of classes of covering arrays (CAs) and packing arrays (PAs). The arrays appearing in these intersections obey to upper and lower bounds regarding the appearance of tuples in sub‐matrices—we call these arrays balanced covering arrays. We formulate and formalize first observations for which upper and lower bounds on the appearance of tuples it is of interest to consider these intersections of CAs and PAs. Outside of these bounds the intersections will be either empty, for the case of too restrictive constraints, or equal to the maximum element in the emerging lattices, for the case of too weak constraints. We present a column extension algorithm for classification of nonequivalent balanced CAs that uses a SAT solver or a pseudo‐Boolean (PB) solver to compute the columns suitable for array extension together with a lex‐leader ordering to identify unique representatives for each equivalence class of balanced CAs. These computations bring to light a dissection of classes of CAs that is partially nested due to the nature of the considered intersections. These dissections can be trivial, containing only a single type of balanced CAs, or can also appear as highly structured containing multiple nested types of balanced CAs. Our results indicate that balanced CAs are an interesting class of designs that is rich of structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call