Abstract

ABSTRACT In this paper, we analyse the model of pure carving turns in alpine skiing and snowboarding based on the usual assumption of approximate balance between forces and torques acting on the skier during the turn. The approximation of torque balance yields both lower and upper limits on the skier speed, which depend only on the sidecut radius of skis and the slope gradient. We use the model to simulate carving runs on slopes of constant gradient and find that pure carving is possible only on slopes of relatively small gradient, with the critical slope angle in the range of . The exact value depends mostly on the coefficient of snow friction and to a lesser degree on the sidecut radius of skis. Comparison with the practice of ski racing shows that the upper speed limit and the related upper limit on the slope gradient set by the model are too restrictive and so must be the assumption of torque balance used in the model. A more advanced theory is needed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.