Abstract
This paper studies the problem of convex hull constraint in conventional empirical likelihood. Specifically, in the framework of regression, a balanced augmented empirical likelihood (BAEL) procedure through adding two synthetic data points is proposed. It can be used to resolve the under-coverage issue, especially in small-sample or high-dimension setting. Furthermore, some asymptotic properties for proposed BAEL ratio statistic are established under mild conditions. The proposed approach performs robust to different random errors by choosing a robust loss function. Extensive simulation studies and a real example are carried out to support our results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.