Abstract

We propose algorithms for allocating n sequential balls into n bins that are interconnected as a d‐regular n‐vertex graph G, where d ≥ 3 can be any integer. In general, the algorithms proceeds in n succeeding rounds. Let ℓ > 0 be an integer, which is given as an input to the algorithms. In each round, ball 1 ≤ t ≤ n picks a node of G uniformly at random and performs a nonbacktracking random walk of length ℓ from the chosen node and simultaneously collects the load information of a subset of the visited nodes. It then allocates itself to one of them with the minimum load (ties are broken uniformly at random). For graphs with sufficiently large girths, we obtain upper and lower bounds for the maximum number of balls at any bin after allocating all n balls in terms of ℓ, with high probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.