Abstract

AbstractThis paper presents a new compilation of gridded datasets for three-dimensional modelling of the Antarctic ice sheet. These are for surface elevation, ice thickness, bedrock elevation and accumulation rate as interpolated on a 281 × 281 mesh with 20 km spacing, and encompass all the ice sheet and surrounding continental shelf. Data sources include the Bamber digital-elevation model from ERS-1 radar-altimeter data, a redigitization of available ice-thickness data, the Giovinetto accumulation data, recent ice-thickness data from British and German expeditions as well as accumulation data from German and Norwegian expeditions. In particular, new data were incorporated for the Filchner-Ronne Ice Shelf and for Dronning Maud Land, Antarctica, arising from the EPICA pre-site survey. Special attention was devoted to matching the various data sources carefully, both among themselves and across the grounding line and below the ice shelves, to enable ice-sheet expansion and retreat in dynamic situations. As an application, the balance flow is calculated over the entire ice sheet using a two-dimensional finite-difference scheme and compared with a previous assessment. This brought to light the existence of ice-streaming features extending well inland. A detailed zoom over Dronning Maud Land exhibits the general flow characteristics of interest for locating a future deep-drilling site. As a by-product, an updated value of 26.4 × 106km3 was obtained for the total volume of the ice sheet and ice shelves, or equivalent to 61.1 m of global sea-level rise after removal of the ice sheet and subsequent oceanic invasion and isostatic rebound. The total accumulation over the grounded ice sheet, including the Antarctic Peninsula, is 1924 Gta−1, or between 5 and 20% higher than earlier estimates. Including all the ice shelves, the value is 2344 Gt a−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call