Abstract

A mathematical model is developed to describe the heat regime of a reversing cold-rolling mill that takes into account the substantial differences between the heat processes occurring in reversing and continuous mills. Model and heat balance equations are used to calculate the strip temperature in passes and the temperature and the heat profile of rolls as functions of the rolling regime parameters and the heat-transfer coefficients that characterize the heat exchange between a strip, rolls, and lubricant-cooling agents and depend on the cooling system parameters of a mill. The model can be used to find a heat regime favorable for achieving the required final magnetic properties of electrical steel. The efficiency of the factors affecting the heat regime in rolling is studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.