Abstract

Horseback riding requires the ability to adapt to changes in balance conditions, to maintain equilibrium on the horse and to prevent falls. Postural adaptation involves specific sensorimotor processes integrating visual information and somesthesic information. The objective of this study was to examine this multisensorial integration on postural control, especially the use of visual and plantar information in static (stable) and dynamic (unstable) postures, among a group of expert horse rider women (n = 10) and a group of non-athlete women (n = 12). Postural control was evaluated through the center of pressure measured with a force platform on stable and unstable supports, with the eyes open and the eyes closed, and with the presence of foam on the support or not. Results showed that expert horse rider women had a better postural stability with unstable support in the mediolateral axis compared to non-athletes. Moreover, on the anteroposterior axis, expert horse riders were less visual dependent and more stable in the presence of foam. Results suggested that horseback riding could help developing particular proprioceptive abilities on standing posture as well as better postural muscle tone during particular bipodal dynamic perturbations. These outcomes provide new insights into horseback riding assets and methodological clues to assess the impact of sport practice.

Highlights

  • Sport practice constraints players to manage simultaneous sources of information in order to maintain postural stability in an efficient manner

  • This would be especially the case when the sport practice induces a high level of postural balance during aerial and ground-contact phases, as in gymnastics

  • In order to address our main hypotheses with conciseness, we described the results of these different analysis of variance (ANOVA) together for each main effect and each interaction in the paragraphs

Read more

Summary

Introduction

Sport practice constraints players to manage simultaneous sources of information in order to maintain postural stability in an efficient manner. This process may be called “adaptive postural control” [1,2]. Paillard [8] concluded that repeated particular postures and movements, induced by sport practice, could generate robust postural adaptations. This would be especially the case when the sport practice induces a high level of postural balance during aerial and ground-contact phases, as in gymnastics. Vuillerme and colleagues [9] compared postural control of a group of expert gymnasts vs. a group of experts in other non-gymnastic sports in three standing postures of increasing difficulty: bipedal, unipedal, and unipedal with unstable support

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.