Abstract

Least Squares-Support Vector Machine (LS-SVM) was used to predict data of Baker’s yeast invertase purification using PEG/MgSO4 Aqueous Two Phase-System (ATPS). Experiments were carried out changing the average molecular mass and percentage of PEG, pH, percentage of MgSO4 as well as of raw extract in order to observe the percentage of yield (% Yield) and Purification Factor (PF) at the bottom phase. The Principal Component Analysis (PCA) was used to eliminate the less significant input variables on the % Yield as well as on the PF. The generalization capacity evaluation for these two parameters has shown that the model generated by the LS-SVM (R2=0.974; 0.932) approach has given the best performance than partial least squares (R2=0.960; 0.926), base radial neural network (R2=0.874; 0.687) and multi-layer perceptron (R2=0.911; 0.652). Also, a bi-objective optimization has been carried out using the previously adjusted models in order to obtain a set of input data producing higher % Yield for the enzymatic activity (448.34%) as well as for the PF (8.45).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.