Abstract

The bake stability was examined for HgCdTe wafers and photodiodes with CdTe surface passivation deposited by thermal evaporation. Electrical and electrooptical measurements were performed on various long-wavelength infrared HgCdTe photodiodes prior to and after a ten-day vacuum bakeout at 80°C, similar to conditions used for preparation of tactical dewar assemblies. It was found that the bakeout process generated additional defects at the CdTe/ HgCdTe interface and degraded photodiode parameters such as zero bias impedance, dark current, and photocurrent. Annealing at 220°C under a Hg vapor pressure following the CdTe deposition suppressed the interface defect generation process during bakeout and stabilized HgCdTe photodiode performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.