Abstract

Baicalin (BAN) has shown promise in alleviating myocardial ischemia/reperfusion (I/R) injury, yet its limited solubility and biocompatibility have hindered its application. Developing drug delivery systems is a promising strategy to enhance the therapeutic potential of BAN in the context of I/R injury. This study aims to prepare a BAN-loaded nanodrug system using polydopamine (PDA)-modified Zeolitic imidazolate framework-8 (ZIF-8) as a carrier, with the goal of improving BAN's mitigating effects on I/R injury. We prepared the BAN nanoparticles (NPs) system, PZB NPs, using ZIF-8 as the carrier. The system was characterized in terms of morphology, particle size, zeta potential, and X-ray diffraction (XRD). We assessed the cytotoxicity of PZB NPs in H9c2 cells, investigated its effects and mechanisms in H/R-induced H9c2 cells, and evaluated its ability to alleviate myocardial I/R injury in rats. PZB NPs exhibited good dispersion, with a BAN loading efficiency of 26.43 ± 1.55%, a hydrated particle size of 102.21 ± 1.19 nm, and a zeta potential of −24.84 ± 0.07 mV. It displayed slow and sustained drug release in an acidic environment (pH 5.5). In vitro studies revealed that PZB NPs was non-cytotoxic and significantly enhanced the recovery of H/R injury H9c2 cell viability. PZB NPs suppressed cell apoptosis, activated the Nrf2/HO-1 pathway, and cleared ROS. In vivo study demonstrated that PZB NPs significantly reduced infarct size, ameliorated fibrosis and improved heart function. The PZB NPs markedly enhances BAN's ability to alleviate I/R injury, both in vitro and in vivo, offering a promising drug delivery system for clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call